量子技術分野のリーディングレーザーメーカーにより開発された光原子時計
トプティカ社は、世界中のお客様から高性能レーザーおよびレーザーラックシステムのサプライヤーとしてご定評頂いております。この独自の専門知識と量子応用分野の深い理解を元に、トプティカ社はついに最初の完全な量子技術ソリューションを提供できる準備が整いました:商用の単一Yb+イオン周波数標準です。このシステムは2台の 19 インチラックで動作し、リモートでアクセスおよび制御が可能です。波長871 nmの光学周波数標準は、トプティカ社の差周波数コム(DFC)と組み合わせることで、低位相ノイズのRF出力を備えた完全なクロックソリューションを提供可能です。
トプティカ社の光量子時計は、トプティカ社とドイツ国立計量研究所 PTBが共同で遂行し成果を上げた研究プロジェクト「opticlock」の元に開発されました。
- Related Products
Laser Rack Systems
- MCLS Ultra-Stable Clock Laser Systems
- MDFC Modular Difference Frequency Comb
- MDL pro Modular Tunable Single-Mode Diode Laser System
General
- FALC pro Digitally controlled fast laser locking module
- Wavelength Meters
Table-Top Systems
- Completed collaborative research projects on optical clocks
opticlock
Optical Single-Ion Clock for Users
Translating laboratory-grade optical single-ion clocks into compact, robust, and user-friendly systems by leveraging ultra-stable laser systems for precision control of ytterbium ions. The project focused on developing a transportable optical frequency standard that surpasses hydrogen masers in both stability and accuracy, enabling high-precision applications in telecommunications, geodesy, and satellite navigation outside specialized labs.
iqClock
Integrated Quantum Clock
The iqClock project represents a groundbreaking effort to miniaturize and stabilize ultra-narrow linewidth lasers for next-generation optical atomic clocks, pushing the boundaries of frequency stability and coherence. By integrating laser systems with quantum logic and lattice clock architectures, the project aimed to create transportable, field-deployable time standards with unprecedented precision—potentially revolutionizing navigation, geodesy, and fundamental physics experiments.
SOC2
Towards Neutral-atom Space Optical Clocks
A pioneering initiative to develop ultra-stable, transportable optical lattice clocks using strontium and ytterbium atoms, with laser systems engineered for exceptional frequency stability, compactness, and robustness. These systems were designed to enable high-precision timekeeping for applications in fundamental physics, geodesy, and intercontinental clock comparisons.
nuClock
Towards a Nuclear Clock with Thorium-229
Realizing the first nuclear clock by targeting the ultra-low-energy isomer transition in thorium-229, which requires the development of novel vacuum-ultraviolet laser systems with extreme precision and stability. This endeavor pushes the frontiers of laser spectroscopy and nonlinear optics, aiming to surpass atomic clock performance with a time standard that is more robust, less sensitive to environmental perturbations, and potentially revolutionary for navigation, telecommunications, and fundamental physics.






