
FemtoFiber pro SCIR
超连续光谱脉冲光纤激光
- 宽带红外光纤激光光源: 980 - 2200 nm
- 由HNLF生成超连续光谱,光谱横跨一个倍频程
- SAM 锁模,PM 光纤基 MOPA 系统
- 紧凑结构,占地面积小于A4纸
- 设计坚固可靠,一键式操作
FemtoFiber pro SCIR系统将一套功能强大的MOPA系统与跨倍频程(980 – 2200 nm)超连续光谱产生机制整合在一个机箱内。宽带连续发射信号由高非线性光纤(HNLF)产生。并可通过内置电动棱镜压缩器进行调整,以满足个性化要求。
-
Specification
连续光谱波长范围 980 -2200 nm 激光输出功率 > 150 mW (典型值 200 mW) 重复率 标准值 80 MHz* - Additional Information
-
Options
M40: 重复率 40 MHz (而非标准版本的 80 MHz) - 振荡器设计支持40MHz重复率
- 部分规格可能有所变动(详情请联系我们)
- 与VAR选项不兼容
Mxx: 客户定制重复率,例如 68 MHz, 77 MHz, … AMP: 多光束系统 - 拓展系统配备放大器,但并无振荡器(因此称为“AMP”,即amplifier)
- 主振荡器系统的外部种子源通过FC/APC光纤接口输入
- 主振荡器可根据情况增加额外的种子源端口
- 多光束系统,可支持多达4台系统集成
- FemtoFiber pro 系列中所有系统搭配可选
- 流行的多光束系统:
主振荡器型号 AMP 1 型号 应用目标 NIR TNIR AMP CARS 激光源 NIR UCP AMP 宽带 CARS 光源 IR SCIR AMP OPCPA 种子系统 TVIS TVIS AMP 泵浦探针光谱
VAR: 可调重复率 - 系统可根据根据振荡单元调节,实现重复频率调制
- 通过高速控制压电传感器调节谐振腔长度,谐振频率> 1 kHz
- 利用慢速控制电动载物台,可实现典型可调范围200kHz(标称重复率± 100 kHz范围)
LRC: 激光重复率控制 - 锁相环路电子装置,以将激光脉冲序列与外部参考信号或激光参照系统相同步
- 信号抖动均方根 < 200 fs
- 紧凑型电子机架,配备电源
- USB 接口及控制软件
配备额外种子源端口,为多线设置做准备 -
Applications
- 中红外信号产生(与FemtoFiber pro SCIR及多光束配置选项相结合)
- 光学相干断层扫描(OCT)
- 光学测量
- Downloads
-
Literature
- 发表文章 : L.v. Grafenstein et al., 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate, Optics Letters 42 (2017)
- 会议论文 : Lang, M. et al., Technology and applications of ultrafast fiber lasers (Proceedings of SPIE Vol. 8330, 833007, 2012)
- 网络文献: Dimitri Basov, Martin Wagner et al: How to control superfast surface plasmons
- 应用指南 : Time-resolved photoluminescence spectroscopy
- Preußler, S. et al. Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise, Opt. Express 21, 23950–23962 (2013)
- Kaptan, Y. et al. Gain dynamics of quantum dot devices for dual-state operation, Applied Physics Letters 104, 261108 (2014).
- Paar, M. et al. Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes. J. Biol. Chem. 287, 11164–11173 (2012).
- Liu, S., Mahony, T. S., Bender, D. A., Sinclair, M. B. & Brener, I. Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization. Appl. Phys. Lett. 103, 181111 (2013).
- Benz, A. et al. Strong coupling in the sub-wavelength limit using metamaterial nanocavities. Nat. Commun. 4, (2013).
- Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, (2013).
- Marangoni, M. et al. Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator. Opt. Lett. 34, 3262–3264 (2009).
- Keilmann, F. & Amarie, S. Mid-infrared Frequency Comb Spanning an Octave Based on an Er Fiber Laser and Difference-Frequency Generation. J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
- Wagner, M. et al. Ultrafast Dynamics of Surface Plasmons in InAs by Time-Resolved Infrared Nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).
- Related Products