DFC CORE +
紧凑型高性能频率梳
- 梳齿间距:80 or 200 MHz
- 稳定性:8·10-18 in 1 s *,5·10-20 in 1000 s *
- 精度:1·10-18,τ> 100 s *
- 集成相位噪声fCEO:<65 mrad [70 mHz-20 MHz]
- 线宽:<1 Hz(锁定到光学基准)20 kHz自由运行
- 交钥匙,全遥控
- 获得专利的CERO(“zero-fCEO”)技术
DFC CORE是一个稳健的,19英寸兼容的基于铒光纤技术的光学频率梳。它是光学时钟、微波生成或微波激光器锁相等应用的核心系统,并可配置附加波。其特色的基于差分频率发生器(DFG)的fCEO稳定具有鲁棒性高、相位噪声低等优点。DFC CORE +具有出色的稳定性和准确性,适用于先进的光学时钟。超过20年的工程经验建造了高质量的科学和工业级激光器设计,这是真正的TOPTICA激光器。
Request a Quotation Application Note Phase and Frequency Locking of Diode Lasers
-
Specification
Specifications DFC CORE + 中心波长 1560 nm (其他波长请参见DFC扩展) 梳齿间距 200 or 80 MHz 激光输出 4或8,光纤耦合,保偏,FC / APC 带宽 > 20 nm, 每个输出 功率 > 10 mW, 每个输出 集成相位噪声fCEO < 40 mrad [100 Hz - 2 MHz], < 65 mrad [70 mHz - 20 MHz] Linewidth < 1 Hz * 环路带宽frep锁定 > 400 kHz (typ. 450 kHz)* 10 kHz, 最适合DFC RF 稳定性 8 · 10-18 in 1s *, 5 · 10-20 in 1000 s* 1 · 10-13 in 1 s** 准确性 1 · 10-18 for τ > 100 s* 1 · 10-14 for τ > 100 s** 带宽压电frep > 50 kHz 参考 光学参考***或DFC RF ***, 低噪声恒温控制石英晶 (OCXO) 参考输入 · 800 MHz 作为RF参考
· 使用DFC RF时为10 MHz,
· 高带宽Imod(DC-10 MHz)用于光学参考尺寸图 (H x W x D) 133 x 450 x 633 mm³, 包含电子元件 散热要求 风冷 能量消耗 < 110 W 工作温度 21 ± 4 °C 重量 < 32 kg 电源 电源连接:100 .. 240 V〜,50/60 Hz,4.0 A,电源适配器输出:220 W,24 V / 9.2 A 控制电脑 笔记本电脑,Windows 10,英语 *锁相光参考,**锁相射频参考,***不包括在内 -
Options
Options Module Description Wavelength extension* DFC IR Centered @ 1560 nm, bandwidth > 80 nm, typ. 100 nm DFC NIR Centered @ 780 nm, bandwidth > 35 nm, typ. 40 nm DFC DVIS** Wavelength range 420 (frep = 80 MHz), 450 (frep = 200 MHz) - 860 nm,
bandwidth typ. 5 nm @ 698 nm, typ. 1 nm @ 420 nmDFC SCNIR** Wavelength range 840 nm (frep = 80 MHz), 860 nm (frep = 200 MHz) - 980 nm,
bandwidth > 50 nm, typ. 100 nm @ 935 nmDFC SCIR** Wavelength range 980 - 2000, bandwidth > 150 nm 参考 DFC RF Low-noise oven-controlled quartz, output: 800 MHz, input: 10 MHz DFC GPS GPS frequency reference, output: 10 MHz, stability: 1.3 · 10-12 @ 1s, 1 · 10-13 @ 40000 s 节拍单位
DFC BC Beam combiner for DFC and cw-laser, fiber coupled DFC BCF Fiber beam combiner for DFC and cw-laser, 980 nm, 1030 nm, 1300 nm, 1550 nm DFC MD Monochromatic detector unit, fiber coupled, use with DFC BC / DFC BCF Locking electronics FALC Fast analog 2-channel PID PFD Phase frequency detector, enables remote locking with FALC DLC EXT Housing and power supply for FALC and PFD Accessories DFC SCOPE Digital oscilloscope with spectrum analyzer (FFT), for beat monitoring up to 4 beats DFC COUNT 4 channel counter WS8-30 HighFinesse波长计,方便测定梳状线数 机架整合 MDFC 机架集成任何DFC组件和完整的光频梳系统 (e.g. MDFC CORE +) 可根据要求提供其他扩展,**可调(受专利保护,US 8284808B2),更多详细信息请咨询 -
Applications
- Microwave Generation
- Laser Reference
- High-resolution Spectroscopy
- Dual-comb Spectroscopy
- Direct Frequency Comb Spectroscopy
- Interferometry
- Transportable AMO Systems
- Quantum Computing
- CEP-stable Seeders
- Rydberg Excitation (Rydberg Flyer for complete laser solutions)
- Optical Clocks
-
Literature
- Scientific Article: E. Benkler et al., End-to-end topology for fiber comb based optical frequency transfer at the 10−21 level, Optics Express [27], 36886 (2019)
- Scientific Article: E. C. Cook et al., Resonant two-photon spectroscopy of the 2s3d 1D2 level of neutral 9Be Phys. Rev. Applied 101, 042503 (2020)
- Scientific Article: M. Collombon et al., Experimental Demonstration of Three-Photon Coherent Population Trapping in an Ion Cloud, Phys. Rev. Applied 12, 034035, (2019)
- Scientific Article: M. Collombon et al., Phase transfer between three visible lasers for coherent population trapping, Optics Letters Vol. 44, Issue 4 (2019)
- Scientific Article: A. Liehl et al., Ultrabroadband out-of-loop characterization of the carrier-envelope phase noise of an offset-free Er:fiber frequency comb. Optics Letters Vol. 42, Issue 10 (2017)
- Scientific Article: T. Puppe et al., Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency, Optics Letters Vol. 41, Issue 8 (2016)
- Scientific Article: G. Krauss et al., All-passive phase locking of a compact Er:fiber laser system, Opt. Lett., 36, 540 (2011)
- Scientific Article: D. Fehrenbacher et al., Free-running performance and full control of a passively phase-stable Er:fiber frequency comb. Optica Vol. 2, Issue 10 (2015)
- Scientific Article: R. Kliese et al., Difference-frequency combs in cold atom physics, arXiv:1605.02426v1 (2016)
- Scientific Article: D. Brida et al., Ultrabroadband Er:fiber lasers, Laser & Photonics Review 8(3) (2014)
- Related Products