完整的DFC系统
购买稳定的光学频率
- 都来自一个单一的来源
- 桌面式和机架式
- 为协同工作的而专门设计
- 易于使用
- 通过单个GUI控制
现在可以从一个来源获得完整的稳定激光器系统,包括DFC CORE +,任何所需的波长扩展,节拍单元,稳定电子设备,波长计,计数器和激光器。
波长在420 nm至2000 nm之间的任何TOPTICA可调二极管激光器都可以锁定到DFC,使用其SHG单元的基础可以稳定波长较短的激光器。 整个激光系统由单个GUI控制。
有关完整系统的详细示例,请参见我们的Optical Clocks和Rydberg传单。
请联系我们以获取详细信息和个性化解决方案!
Request a Quotation Download the Product Brochure Application Note Phase and Frequency Locking of Diode Lasers
-
Specification
模组 描述 光频梳 DFC CORE + 光频梳,4个无偏移输出@ 1560 nm,> 10 mW,> 20 nm 波长拓展 DFC IR 中心@ 1560 nm,带宽> 80 nm,典型值100nm DFC NIR 中心@ 780 nm,带宽> 35 nm,典型值40nm DFC DVIS** 波长范围420(frep = 80 MHz),450(frep = 200 MHz)
860 nm,带宽典型值> 2 nm @ 698 nm(典型值) 1nm@ 420nmDFC SCNIR** 波长范围840 nm(frep = 80 MHz),860 nm(frep = 200 MHz)
980 nm,带宽> 50 nm,典型100nm@ 935nmDFC SCIR** 波长范围980-2000,带宽> 150 nm 参考 DFC RF 低噪声烤箱控制石英,输出:800 MHz,输入:10 MHz DFC GPS GPS频率参考,输出:10 MHz,稳定性:1.3·10-12 @ 1s,1·10-13 @ 40000 s 节拍器 DFC BC >用于DFC和CW激光器的光束组合器,光纤耦合低噪声烤箱控制石英,输出:800 MHz,输入:10 MHz DFC BCF 用于DFC和连续激光的光纤合束器,980 nm,1030 nm,1300 nm,1550 nm DFC MD 单色探测器单元,光纤耦合,与DFC BC / DFC BCF配合使用 锁定电子模块 FALC 快速模拟器双通道 PID PFD 相位频率检测器,使得能够与FALC远程锁定 DLC EXT FALC和PFD的外壳和电源 配件 DFC SCOPE 数字示波器与频谱分析仪(FFT),方便的节拍监测软件 DFC COUNT 4通道计数器 WS8-30 HighFinesse波长计,方便确定梳线号 机架整合 MDFC 机架集成任何DFC组件和完整的光频梳系统(例如MDFC CORE +) * other extensions on request, ** tunable (patent protected, US 8284808B2), please inquire for more details -
Applications
- Microwave Generation
- Laser Reference
- High-resolution Spectroscopy
- Dual-comb Spectroscopy
- Direct Frequency Comb Spectroscopy
- Interferometry
- Transportable AMO Systems
- Quantum Computing
- CEP-stable Seeders
- Rydberg Excitation (Rydberg Flyer for complete laser solutions)
- Optical Clocks
-
Downloads
- Short Info: T-RACK
-
Literature
- Scientific Article: E. Benkler et al., End-to-end topology for fiber comb based optical frequency transfer at the 10−21 level, Optics Express [27], 36886 (2019)
- Scientific Article: E. C. Cook et al., Resonant two-photon spectroscopy of the 2s3d 1D2 level of neutral 9Be Phys. Rev. Applied 101, 042503 (2020)
- Scientific Article: M. Collombon et al., Experimental Demonstration of Three-Photon Coherent Population Trapping in an Ion Cloud, Phys. Rev. Applied 12, 034035, (2019)
- Scientific Article: M. Collombon et al., Phase transfer between three visible lasers for coherent population trapping, Optics Letters Vol. 44, Issue 4 (2019)
- Scientific Article: A. Liehl et al., Ultrabroadband out-of-loop characterization of the carrier-envelope phase noise of an offset-free Er:fiber frequency comb. Optics Letters Vol. 42, Issue 10 (2017)
- Scientific Article: T. Puppe et al., Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency, Optics Letters Vol. 41, Issue 8 (2016)
- Scientific Article: G. Krauss et al., All-passive phase locking of a compact Er:fiber laser system, Opt. Lett., 36, 540 (2011)
- Scientific Article: D. Fehrenbacher et al., Free-running performance and full control of a passively phase-stable Er:fiber frequency comb. Optica Vol. 2, Issue 10 (2015)
- Scientific Article: R. Kliese et al., Difference-frequency combs in cold atom physics, arXiv:1605.02426v1 (2016)
- Scientific Article: D. Brida et al., Ultrabroadband Er:fiber lasers, Laser & Photonics Review 8(3) (2014)
- Related Products