DFC BC / DFC BCF / DFC MD
灵活的节拍检测单元
- 灵活的节拍检测单元
- 为DFC和DL pro而设计
- 稳定紧凑
TOPTICA的节拍检测包括两个灵活的模块:DFC BC(或DFC BCF)和DFC MD。 将光束组合和拍子检测分为两个单元,可以将它们放置在不同的位置。 DFC BC和DFC MD单元是专门为DFC与TOPTICA的可调二极管激光器DL pro系列的组合而设计的,但也可以与其他cw激光器一起使用。
Request a Quotation Application Note Phase and Frequency Locking of Diode Lasers
-
Specification
DFC BC DFC BCF DFC MD 输入端 1.光频梳:光纤耦合(包括FC / APC光纤耦合器),建议> 0.25 mW / nm
2.推荐cw激光器> 100μW,理想功率1mw (含光纤耦合,光纤耦合器)1. 光频梳: 光纤耦合(FC / APC)
2.光频梳+ cw激光器:光纤耦合(包括光纤耦合器)光频梳+ CW激光:光纤耦合(包含光纤耦合器) 输出端 1. 光频梳+cw激光器:光纤耦合(包括光纤耦合器和SM / PM光纤)
2. cw激光器:自由光束(可选光纤耦合)1. 光频梳+cw激光器:光纤耦合(FC / APC)
2. cw激光器:光纤耦合(FC / APC)RF信号,放大后可与mFALC一起使用 波长 420 nm - 2000 nm 420 nm - 2000 nm 工作范围光谱宽度 大约 50 nm(取决于波长) 大约 100 nm(取决于波长和分光比) 50 nm(取决于波长) 滤波元件 n.a. n.a. - 10ghz带宽光栅 (其他带宽可按要求定制)
- 光学分辨率> 50.000
- 通过手动调节微米螺丝的刻度读数进行调谐
- 调谐分辨率<1 GHz(典型值)
Dimensions (HxWxD) 49 x 100 x 100 mm3 23 x 90 x 200 mm3 64 x 60 x 120 mm3 -
Options
- 模块化DFC扩展:提供了各种扩展模块,可将DFC CORE +的无偏移基本输出从1560 nm转换为420 nm至2000 nm之间的任何所需波长
-
Applications
- Optical Clocks
- Microwave Generation
- Laser Reference
- High-resolution Spectroscopy
- Dual-comb Spectroscopy
- Direct Frequency Comb Spectroscopy
- Interferometry
- Transportable AMO Systems
- Quantum Computing
- CEP-stable Seeders
-
Literature
- Scientific Article: E. Benkler et al., End-to-end topology for fiber comb based optical frequency transfer at the 10−21 level, Optics Express [27], 36886 (2019)
- Scientific Article: E. C. Cook et al., Resonant two-photon spectroscopy of the 2s3d 1D2 level of neutral 9Be Phys. Rev. Applied 101, 042503 (2020)
- Scientific Article: M. Collombon et al., Experimental Demonstration of Three-Photon Coherent Population Trapping in an Ion Cloud, Phys. Rev. Applied 12, 034035, (2019)
- Scientific Article: M. Collombon et al., Phase transfer between three visible lasers for coherent population trapping, Optics Letters Vol. 44, Issue 4 (2019)
- Scientific Article: A. Liehl et al., Ultrabroadband out-of-loop characterization of the carrier-envelope phase noise of an offset-free Er:fiber frequency comb. Optics Letters Vol. 42, Issue 10 (2017)
- Scientific Article: T. Puppe et al., Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency, Optics Letters Vol. 41, Issue 8 (2016)
- Scientific Article: G. Krauss et al., All-passive phase locking of a compact Er:fiber laser system, Opt. Lett., 36, 540 (2011)
- Scientific Article: D. Fehrenbacher et al., Free-running performance and full control of a passively phase-stable Er:fiber frequency comb. Optica Vol. 2, Issue 10 (2015)
- Scientific Article: R. Kliese et al., Difference-frequency combs in cold atom physics, arXiv:1605.02426v1 (2016)
- Scientific Article: D. Brida et al., Ultrabroadband Er:fiber lasers, Laser & Photonics Review 8(3) (2014)
- Related Products